Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Sci Total Environ ; : 172979, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705303

ABSTRACT

Integrating microbial fuel cells (MFC) into constructed wetland systems (CW) has been an efficient wastewater treatment to improve the pollutants removal and regenerate power energy. This study fabricated a sludge biochar material (SBM) to sequestrate the carbon of residual sludge. Thereafter used SBM and modified SBM as the substrate materials to construct three groups of CW-MFC for decreasing the greenhouse gas (GHG) emission. The water quality improvement in removal efficiency achieved (2.59 %, 3.10 %, 5.21 % for COD; 3.31 %, 3.60 %, 6.71 % for TN; 1.80 %, 7.38 %, 4.93 % for TP) by the application of MFC, SBM, and modified SBM in wastewater treatment, respectively. Additionally, the reduction in global warming potential (GWP) realized 17.2 %, 42.2 %, and 64.4 % resulting from these applications. The carbon flow and fate diagrams showed MFC shifted the gas phase­carbon flow from CH4 to CO2, and SBM promoted this shift trends. Microbial diversity indicated enrichment of electrochemically active bacteria (EAB), denitrifying bacteria, and phosphate accumulating organisms (PAOs) by SBM. Metabolic pathways analysis showed that introduction of MFC and SBM exhibited significant increases of key functional genes in metabolic pathway of anaerobic oxidation of methane (AOM). This study highlights the benefit of CW-MFC in and provides a new strategy for removing pollutants and abating GHG emissions in wastewater treatment.

2.
Water Res ; 251: 121139, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38237458

ABSTRACT

In the post-COVID-19 pandemic era, various antimicrobials have emerged and concentrated in waste-activated sludge (WAS), affecting the biological treatment of WAS. However, there is still a knowledge gap in the dynamic response and adaptive mechanism of anaerobic microbiome under exogenous antimicrobial stress. This study found that methylisothiazolinone (MIT, as a typic antimicrobial) caused an interesting lag effect on the volatile fatty acids (VFAs) promotion in the WAS anaerobic fermentation process. MIT was effective to disintegrate the extracellular polymeric substances (EPS), and those functional anaerobic microorganisms were easily exposed and negatively impacted by the MIT interference after the loss of protective barriers. Correspondingly, the ecological interactions and microbial metabolic functions related to VFA biosynthesis (e.g., pyruvate metabolism) were downregulated at the initial stage. The syntrophic consortia gradually adapted to the interference and attenuated the MIT stress by activating chemotaxis and resistance genes (e.g., excreting, binding, and inactivating). Due to the increased bioavailable substrates in the fermentation systems, the dominant microorganisms (i.e., Clostridium and Caloramator) with both VFAs production and MIT-tolerance functions have been domesticated. Moreover, MIT disrupted the syntrophic interaction between acetogens and methanogens and totally suppressed methanogens' metabolic activities. The VFA production derived from WAS anaerobic fermentation was therefore enhanced due to the interference of antimicrobial MIT stress. This work deciphered dynamic changes and adaptive evolution of anaerobic syntrophic consortia in response to antimicrobial stress and provided guidance on the evaluation and control of the ecological risks of exogenous pollutants in WAS treatment.


Subject(s)
Anti-Infective Agents , Microbiota , Thiazoles , Humans , Fermentation , Anaerobiosis , Sewage/chemistry , Pandemics , Fatty Acids, Volatile/metabolism , Hydrogen-Ion Concentration
3.
Chemosphere ; 349: 140955, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104737

ABSTRACT

The activation of peroxymonosulfate (PMS) has gained significant interest in the removal of organic pollutants. However, traditional methods usually suffer from drawbacks such as secondary contamination and high energy requirements. In this study, we propose a green and cost-effective approach utilizing calcium oxide (CaO) to activate PMS, aiming to construct a simple and reliable PMS based advanced oxidation processes (AOPs). The proposed CaO/PMS system achieved fast degradation of methylene blue (MB), where the degradation rate of CaO/PMS system (0.24 min-1) was nearly 2.67 times that of PMS alone (0.09 min-1). Under the optimized condition, CaO/PMS system exhibited remarkable durability against pH changes, co-exists ions or organic matters. Furthermore, singlet oxygen (1O2) was identified as the dominant reactive oxygen species by electron paramagnetic resonance (EPR) and quenching tests. Accordingly, the degradation pathways of MB are proposed by combing the results of LC/MS analysis and density functional theory (DFT) calculations, and the predicted ecotoxicity of the generated byproducts evaluated by EOCSAR could provide systematic insights into the fates and environmental risks of MB. Overall, the study provides an eco-friendly and effective strategy for treating dyeing wastewater, which should shed light on the application of PMS based AOPs.


Subject(s)
Methylene Blue , Peroxides , Calcium Compounds
4.
J Thorac Dis ; 15(11): 6106-6114, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38090297

ABSTRACT

Background: Increasing evidence suggests that ground-glass opacity featured lung adenocarcinoma (GGO-LUAD) and pure solid-LUAD have significantly different tumor biological behaviors; the former is usually indolent. Genetic variations fundamentally contribute to this distinct tumor behaviors. This study aims to investigate and compare the gene mutations using next-generation sequencing (NGS) technology in these two subtypes of LUAD. Methods: The clinical data and gene testing results of 46 patients suffering from LUAD with a histologically invasive subtype ≤3 cm and operated in the Thoracic Surgery Department of Beijing Tsinghua Changgung Hospital from May 2019 to December 2022 were retrospectively analyzed; a case-control study was performed to compare the pathological and genetic differences between LUAD with a GGO component and pure solid-LUAD. Results: Notable differences existed in vascular invasion, tumor spread through air spaces (STAS) and high-risk histological subtypes (micropapillary or solid subtypes) between the two types of LUAD with similar histologically invasive size. No significant difference was found in the mutation frequency of EGFR and KRAS. However, gene mutations were more prevalent in the cell cycle and TP53 signaling pathway for solid-LUAD. A significant difference was found in the mutation frequency of the tumor suppressor genes TP53 and CDKN2A between the two types. Conclusions: The wild-type TP53 and CDKN2A genes could potentially be used as molecular indicators for indolent LUAD characterized by GGO-featured.

5.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827085

ABSTRACT

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Subject(s)
Phosphorus , Quartz , Fermentation , Sand , Anaerobiosis , Crystallization , Sewage , Waste Disposal, Fluid , Phosphates/chemistry , Ferrous Compounds/chemistry
6.
Bioresour Technol ; 390: 129842, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820968

ABSTRACT

The effective control of total nitrogen (ETN) and total phosphorus (ETP) in effluent is challenging for wastewater treatment plants (WWTPs). In this work, automated machine learning (AutoML) (mean square error = 0.4200 âˆ¼ 3.8245, R2 = 0.5699 âˆ¼ 0.6219) and back propagation artificial neural network (BPANN) model (mean square error = 0.0012 âˆ¼ 6.9067, R2 = 0.4326 âˆ¼ 0.8908) were used to predict and analyze biological nutrients removal in full-scale WWTPs. Interestingly, BPANN model presented high prediction performance and general applicability for WWTPs with different biological treatment units. However, the AutoML candidate models were more interpretable, and the results showed that electricity carbon emission dominated the prediction. Meanwhile, increasing data volume and types of WWTP hardly affected the interpretable results, demonstrating its wide applicability. This study demonstrated the validity and the specific advantages of predicting ETN and ETP using H2O AutoML and BPANN model, which provided guidance on the prediction and improvement of biological nutrients removal in WWTPs.


Subject(s)
Waste Disposal, Fluid , Water Purification , Waste Disposal, Fluid/methods , Neural Networks, Computer , Nitrogen/analysis , Nutrients , Sewage
7.
Chemosphere ; 341: 140035, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660784

ABSTRACT

The development of low carbon treatment processes is an important issue worldwide. Partial denitrification coupled with anammox (PD/A) is a novel strategy to remove nitrogen and reduce N2O emissions. The influence of C/N ratio and NH4+ concentration on nitrogen removal and N2O emissions was investigated in batch reactors filled with PD/A coupled sludge. A C/N ratio of 2.1 was effective for nitrogen removal and N2O reduction; higher ammonia concentration might make anammox more active and indirectly reduce N2O emissions. Long-term operation further confirmed that a C/N ratio of 2.1 resulted in a minimum effluent N2O concentration (mean value of 0.94 µmol L-1); as the influent NH4+ concentration decreased to 50 mg L-1 (NH4+-N/NO3--N: 1), the nitrogen removal rate increased to 82.41%. Microbial analysis showed that anammox bacteria (Candidatus Jettenia and Ca. Brocadia) were enriched in the PD/A system and Ca. Brocadia gradually dominated the anammox community, with the relative abundance increasing from 1.69% to 18.44% between days 97 and 141. Finally, functional gene analysis indicated that the abundance of nirS/K and hao involved in partial denitrification and anammox, respectively, increased during long-term operation of the reactor; this change benefitted nitrogen metabolism in anammox, which could indirectly reduce N2O emissions.


Subject(s)
Ammonia , Denitrification , Anaerobic Ammonia Oxidation , Carbon , Nitrogen
8.
Cell Death Dis ; 14(8): 527, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587140

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with high morbidity and mortality worldwide. Although the dysregulation of BARX1 expression has been shown to be associated with malignant cancers, including NSCLC, the underlying mechanism remains elusive. In this study, we identified BARX1 as a common differentially expressed gene in lung squamous cell carcinoma and adenocarcinoma. Importantly, we uncovered a novel mechanism behind the regulation of BARX1, in which ZFP36 interacted with 3'UTR of BARX1 mRNA to mediate its destabilization. Loss of ZFP36 led to the upregulation of BARX1, which further promoted the proliferation, migration and invasion of NSCLC cells. In addition, the knockdown of BARX1 inhibited tumorigenicity in mouse xenograft. We demonstrated that BARX1 promoted the malignant phenotypes by transactivating a set of master oncogenes involved in the cell cycle, DNA synthesis and metastasis. Overall, our study provides insights into the mechanism of BARX1 actions in NSCLC and aids a better understanding of NSCLC pathogenesis.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Homeodomain Proteins , Lung Neoplasms , Transcription Factors , Tristetraprolin , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Homeodomain Proteins/genetics , Lung Neoplasms/genetics , Oncogenes , Phenotype , Transcription Factors/genetics , Tristetraprolin/genetics
9.
Sci Total Environ ; 897: 165416, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37433337

ABSTRACT

Recovery of phosphorus (P) via vivianite crystallization is an effective strategy to recycle resources from the anaerobic fermentation supernatant. However, the presence of different components in the anaerobic fermentation supernatant (e.g., polysaccharides and proteins) might alter conditions for optimal growth of vivianite crystals, resulting in distinct vivianite characteristics. In the present study, the effect of different components on vivianite crystallization was explored. Then, the reaction parameters (pH, Fe/P, and stirring speed) for P recovery from synthetic anaerobic fermentation supernatant as vivianite were optimized using response surface methodology, and the relationship between crystal properties and supersaturation was elucidated using a thermodynamic equilibrium model. The optimized values for pH, Fe/P, and stirring speed were found to be 7.8, 1.74, and 500 rpm respectively, resulting in 90.54 % P recovery efficiency. Moreover, the variation of reaction parameters did not change the crystalline structure of the recovered vivianite but influenced its morphology, size, and purity. Thermodynamic analysis suggested the saturation index (SI) of vivianite increased with increasing pH and Fe/P ratio, leading to a facilitative effect on vivianite crystallization. However, when the SI was >11, homogenous nucleation occurred so that the nucleation rate was much higher than the crystal growth rate, causing a smaller crystal size. The findings presented herein will be highly valued for the future large-scale application of the vivianite crystallization process for wastewater treatment.


Subject(s)
Phosphorus , Waste Disposal, Fluid , Fermentation , Crystallization , Anaerobiosis , Sewage , Phosphates , Ferrous Compounds
10.
J Environ Manage ; 344: 118369, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37356328

ABSTRACT

The spread of antibiotic resistance genes (ARGs) is an emerging global health concern, and wastewater treatment plants (WWTPs), as an essential carrier for the occurrence and transmission of ARGs, deserves more attention. Based on the Illumina NovaSeq high-throughput sequencing platform, this study conducted a metagenomic analysis of 18 samples from three full-scale WWTPs to explore the fate of ARGs in the whole process (influent, biochemical treatment, advanced treatment, and effluent) of wastewater treatment. Total 70 ARG subtypes were detected, among which multidrug, aminoglycoside, tetracycline, and macrolide ARGs were most abundant. The different treatment processes used for three WWTPs were capable of reducing ARG diversity, but did not significantly reduce ARG abundance. Compared to that by denitrification filters, the membrane bioreactor (MBR) process was advantageous in controlling the prevalence of multidrug ARGs in WWTPs. Linear discriminant analysis Effect Size (LEfSe) suggested g_Nitrospira, g_Curvibacter, and g_Mycobacterium as the key bacteria responsible for differential ARG prevalence among different WWTPs. Meanwhile, adeF, sul1, and mtrA were the persistent antibiotic resistance genes (PARGs) and played dominant roles in the prevalence of ARGs. Proteobacteria and Actinobacteria were the host bacteria of majority ARGs in WWTPs, while Pseudomonas and Nitrospira were the most crucial host bacteria influencing the dissemination of critical ARGs (e.g., adeF). In addition, microbial richness was determined to be the decisive factor affecting the diversity and abundance of ARGs in wastewater treatment processes. Overall, regulating the abundance of microorganisms and key host bacteria by selecting processes with microbial interception, such as MBR process, may be beneficial to control the prevalence of ARGs in WWTPs.


Subject(s)
Anti-Bacterial Agents , Water Purification , Anti-Bacterial Agents/pharmacology , Wastewater , Genes, Bacterial , Prevalence , Bacteria/genetics , Drug Resistance, Microbial/genetics
11.
Water Res ; 234: 119816, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36878152

ABSTRACT

The massive use of zinc pyrithione (ZPT, as broad-spectrum bactericides) resulted in its high levels in waste activated sludge (WAS) and affected subsequent WAS treatment. This work revealed the effects of ZPT on the volatile fatty acids (VFAs) during WAS anaerobic digestion, in which VFAs yield was enhanced by approximately 6-9 folds (from 353 mg COD/L in control to 2526-3318 mg COD/L with low level of ZPT (20-50 mg/g TSS)). The ZPT occurred in WAS enabled the acceleration of solubilization, hydrolysis and acidification processes while inhibited the methanogenesis. Also, the low ZPT contributed to the enrichment of functional hydrolytic-acidifying microorganisms (e.g., Ottowia and Acinetobacter) but caused the reduction of methanogens (e.g., Methanomassiliicoccus and Methanothrix). Meta-transcriptomic analysis demonstrated that the critical genes relevant to extracellular hydrolysis (i.e. CLPP and ZapA), membrane transport (i.e. gltI, and gltL), substrates metabolisms (i.e. fadj, and acd), and VFAs biosynthesis (i.e. porB and porD) were all upregulated by 25.1-701.3% with low level of ZPT. Specifically, the ZPT stimulus on amino acids metabolism for VFAs transformation was prominent over carbohydrates. Moreover, the functional species enabled to regulate the genes in QS and TCS systems to maintain favorable cell chemotaxis to adapt the ZPT stress. The cationic antimicrobial peptide resistance pathway was upregulated to blunt ZPT with the secretion of more lipopolysaccharide and activate proton pumps to maintain ions homeostasis to antagonize the ZPT toxicity for high microbial activities, the abundance of related genes was up-regulated by 60.5 to 524.5%. This work enlightened environmental behaviors of emerging pollutants on WAS anaerobic digestion process with interrelations of microbial metabolic regulation and adaptive responses.


Subject(s)
Fatty Acids, Volatile , Sewage , Sewage/chemistry , Fermentation , Anaerobiosis , Hydrogen-Ion Concentration
12.
Sci Total Environ ; 873: 162440, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36842577

ABSTRACT

The excessive application of antibiotics and surfactants resulted in their massive accumulation in waste activated sludge (WAS), but the co-occurrent impacts of antibiotics and surfactants on the antibiotic resistant genes (ARGs) fates have seldom reported. This work mainly revealed the roles and critical mechanisms of sodium dodecyl benzene sulfonate (SDBS) on the sulfadiazine (SDZ) stressing for ARGs distribution during WAS anaerobic fermentation. High-throughput qPCR and metagenomic analysis revealed that SDBS aggravated the SDZ selective pressure, and accelerated the proliferation of ARGs. The total abundance of ARGs was increased from 8.81 × 1010 in SDZ to 1.17 × 1011 copies/g TSS in the SDBS/SDZ co-occurrence system. Specifically, the absolute abundances of ermF (MLSB), mefA (MLSB), tetM-01 (tetracycline), tetX (tetracycline), sul2 (sulfonamide) and strB (aminoglycoside) were risen from 4.60 × 108-7.44 × 109 copies/g TSS in the SDZ reactor to 1.02 × 109-4.63 × 1010 copies/g TSS in SDBS/SDZ reactor. SDBS was contributed to the SDZ solubilization and simultaneously effective in disintegrating extracellular polymeric substances and improving cell membrane permeability, which would facilitate the SDZ transport and its interactions with ARGs hosts. Consequently, the microbial community structure was evidently altered, and the typical ARGs hosts (i.e., Saccharimonadales and Ahniella) were greatly enriched. Also, the cell signal transduction systems (i.e., glnL, glrK and pilG), oxidative stress response (i.e., frmA and recA) and bacterial secretion systems (i.e., VirB4), which were related with ARGs propagation, were all provoked in the co-occurred SDBS/SDZ reactor compared with that of sole SDZ. PLS-PM analysis suggested that the bacterial community was the predominant factor that determined the ARGs fates, followed by mobile genetic elements and metabolic pathway. This work demonstrated the interactive effects of surfactants and antibiotics on the ARGs fates in WAS fermentation systems and gave insightful implications on the ecological risks of different exogenous pollutants.


Subject(s)
Anti-Bacterial Agents , Sewage , Anti-Bacterial Agents/toxicity , Sewage/microbiology , Fermentation , Surface-Active Agents/toxicity , Anaerobiosis , Genes, Bacterial , Sulfadiazine , Tetracycline , Drug Resistance, Microbial/genetics , Cell Proliferation
13.
Environ Sci Pollut Res Int ; 30(17): 51245-51260, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36809628

ABSTRACT

Three anodic biofilm electrode coupled CWs (BECWs) with graphite (E-C), aluminum (E-Al), and iron (E-Fe), respectively, and a control system (CK) were constructed to evaluate the removal performance of N and P in the secondary effluent of wastewater treatment plants (WWTPs) under different hydraulic retention time (HRT), electrified time (ET), and current density (CD). Microbial communities, and different P speciation, were analyzed to reveal the potential removal pathways and mechanism of N and P in BECWs. Results showed that the optimal average TN and TP removal rates of CK (34.10% and 55.66%), E-C (66.77% and 71.33%), E-Al (63.46% and 84.93%), and E-Fe (74.93% and 91.22%) were obtained under the optimum conditions (HRT 10 h, ET 4 h, CD 0.13 mA/cm2), which demonstrated that the biofilm electrode could significantly improve N and P removal. Microbial community analysis showed that E-Fe owned the highest abundance of chemotrophic Fe(II) (Dechloromonas) and hydrogen autotrophic denitrifying bacteria (Hydrogenophaga). N was mainly removed by hydrogen and iron autotrophic denitrification in E-Fe. Moreover, the highest TP removal rate of E-Fe was attributed to the iron ion formed on the anode, causing co-precipitation of Fe(II) or Fe(III) with PO43--P. The Fe released from the anode acted as carriers for electron transport and accelerated the efficiency of biological and chemical reactions to enhance the simultaneous removal of N and P. Thus, BECWs provide a new perspective for the treatment of the secondary effluent from WWTPs.


Subject(s)
Iron , Wastewater , Iron/analysis , Nitrogen/analysis , Phosphorus , Wetlands , Denitrification , Electrodes , Hydrogen/analysis , Ferrous Compounds , Waste Disposal, Fluid/methods
14.
J Environ Manage ; 331: 117324, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36657201

ABSTRACT

Vivianite crystallization has been regarded as a suitable option for recovering phosphorus (P) from P-containing wastewater. However, the presence of humic substances (HS) would inevitably affect the formation of vivianite crystals. Therefore, the influences of HS on vivianite crystallization and the changes in the harvested vivianite crystals were investigated in this study. The results suggested the inhibition effect of 70 mg/L HS on vivianite crystallization reached 12.24%, while it could be attenuated by increasing the pH and Fe/P ratio of the solution. Meanwhile, the addition of HS altered the size, purity, and morphology of recovered vivianite crystals due to the blockage of the growth sites on the crystal surface. Additionally, the formation of phosphate ester group, hydrogen bonding, and COOH-Fe2+ complexes are the potential mechanisms of HS interaction with vivianite crystals. The results obtained herein will help to elucidate the underlying mechanism of HS on vivianite crystallization from P-containing wastewater.


Subject(s)
Phosphorus , Wastewater , Phosphorus/chemistry , Humic Substances , Crystallization , Waste Disposal, Fluid , Phosphates/chemistry
15.
Sci Total Environ ; 858(Pt 3): 160128, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36370789

ABSTRACT

Persulfate (PS)-based technologies have been demonstrated as efficient methods for enhancing the performance of waste activated sludge (WAS) anaerobic fermentation. Except for volatile fatty acids (VFAs), however, some exogenous substances would be also released during this process, which might affect its application as a carbon source for sewage treatment. To fill this knowledge gap, the feasibility of sludge fermentation liquid regulated by Fe/persulfate (PS) (PS-FL) as a carbon source for sewage treatment was investigated in this study. Results indicated that PS-FL exhibits distinct effects on the pollutants removal compared with commercial sodium acetate. It facilitates PO43--P removal but slightly inhibited COD removal & denitrification, and sludge settleability was also decreased. The mechanistic analysis demonstrated that PS-FL could stimulate the enrichment of phosphorus-accumulating bacteria (i.e. Candidatus Accumulibacter) and the enhancement of their metabolic activities (i.e. PKK), thereby enhancing the biological PO43--P removal. Moreover, Fe ions in PS-FL could combine with PO43--P to form a precipitate and thus further contributed to PO43--P removal. Conversely, the sulfate reduction process induced by SO42- in PS-FL inhibits denitrification by reducing the abundance of denitrifying bacteria (i.e. Dechloromonas) and metabolic activities (i.e. narG). Additionally, PS-FL also decreased the abundance of flocculation bacteria (i.e. Flavobacterium) and down-regulated the expression of functional genes responsible for COD removal, by which it exhibited certain negative effects on COD removal and sludge settleability. Overall, this work demonstrated that PS-FL can re-circulation as a carbon source for sewage treatment, which provides a new approach to recovering valuable carbon sources from WAS.


Subject(s)
Environmental Pollutants , Microbiota , Sewage , Carbon
16.
Environ Res ; 216(Pt 4): 114767, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36370815

ABSTRACT

Anaerobic fermentation is effective for waste activated sludge (WAS) disposal to realize resource generation and pollutants reduction, and various pretreatments were commonly applied to improve the performance. This work mainly investigated the effects of typical WAS pretreatment approaches on the antibiotic resistance genes (ARGs, as emerging contaminants) removal during anaerobic fermentation processes and unveiled the underlying mechanisms. The results indicated that all the pretreatment strategies exhibited evident effects on the overall ARGs removal with the order of Fe2+ activated persulfate (PS/Fe2+) > pH 10 > Ultrasonication > Heat, and showed selective removal tendency for the specific ARGs (namely easily removed (aadA1 and sul1) and persistent ARGs). Mechanistic analysis demonstrated that the pretreatments disrupted the extracellular polymeric substances (EPS) and rose the cell membrane permeability (particularly for PS/Fe2+ and Heat). Then the increased ARGs release benefitted the subsequent reduction of mobile genetic elements (MGEs) and extracellular ARGs (especially for PS/Fe2+ and pH10), resulting the ARGs attenuation. Pretreatments significantly shifted the microbial community structure and the abundances of potential ARGs hosts (i.e., Sulfuritalea, and Denitratisoma). Also, the different pretreatments exhibited distinct effects on the microbial metabolic traits related with ARGs proliferation (i.e., ABC transporters, two-component system and bacterial secretion systems), which also contributed to the ARGs attenuations during WAS fermentation. The partial least-squares path modeling (PLS-PM) analysis indicated that the bacterial community (total effects = 0.968) was key factor determining ARGs fates.


Subject(s)
Genes, Bacterial , Sewage , Sewage/microbiology , Fermentation , Anaerobiosis , Drug Resistance, Microbial/genetics , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Wastewater
17.
Sci Total Environ ; 858(Pt 2): 160048, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36356726

ABSTRACT

Partial denitrification-anaerobic ammonium oxidation (PD/A) was considered a novel technology for biological nitrogen removal. In this study, a glycerol-driven PD/A granular sludge reactor was constructed, and its nitrogen removal efficiency and microbial mechanisms were investigated systematically. After optimization, the PD/A reactor achieved 92.3 % of the nitrogen removal (~90 % by anammox) with the influent COD/NO3--N ratio of 2.6, and approximate 1.36 mol NO3--N was required for removing 1 mol NH4+-N. Granular sludge with layered structure (anaerobic ammonium oxidizing bacteria (AnAOB) was wrapped by the heterotrophic bacteria) was successfully developed, which resulted in the sludge floating. Bacillus was firstly found to be the dominant genus in PD/A system with an abundance of 46.1 %, whereas the AnAOB only accounted for 0.2-2.8 %. Metatranscriptomic analysis showed that the metabolic characteristics obviously changed during the operation, and the differential expressing genes mainly belonged to ABC transport and quorum sensing pathway. Further analysis about the expressing patterns of nitrogen metabolism related genes indicated that the anammox related genes (mainly from Candidatus Brocadia and Candidatus Jettenia) exhibited a much higher expressing level than other genes. Interestingly, the assimilatory nitrate reduction process in Bacillus showed great NO2--N producing potential, so it was considered to be an essential pathway participating in PD/A process. This study provided a comprehensive insight into the glycerol-driven PD/A system.


Subject(s)
Ammonium Compounds , Bacillus , Denitrification , Nitrites , Sewage/microbiology , Nitrates , Anaerobiosis , Glycerol , Bioreactors/microbiology , Bacillus/metabolism , Computational Biology , Ammonium Compounds/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Wastewater/chemistry
18.
J Environ Sci (China) ; 124: 130-138, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182123

ABSTRACT

Soluble microbial products (SMPs), dissolved organic matter excreted by activated sludge, can interact with antibiotics in wastewater and natural water bodies. Interactions between SMPs and antibiotics can influence antibiotic migration, transformation, and toxicity but the mechanisms involved in such interactions are not fully understood. In this study, integrated spectroscopy approaches were used to investigate the mechanisms involved in interactions between SMPs and a representative antibiotic, trimethoprim (TMP), which has a low biodegradation rate and has been detected in wastewater. The results of liquid chromatography-organic carbon detection-organic nitrogen detection indicated that the SMPs used in the study contained 15% biopolymers and 28% humic-like substances (based on the total dissolved organic carbon concentration) so would have contained sites that could interact with TMP. A linear relationship of fluorescent intensities of tryptophan protein-like substances in SMP was observed (R2>0.99), indicating that the fluorescence enhancement between SMP and TMP occurred. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that carboxyl, carbonyl, and hydroxyl groups were the main functional groups involved in the interactions. The electrostatic and π-π interactions were discovered by the UV-vis spectra and 1H nuclear magnetic resonance spectra. Structural representations of the interactions between representative SMP subcomponents and TMP were calculated using density functional theory, and the results confirmed the conclusions drawn from the 1H nuclear magnetic resonance spectra. The results help characterize SMP-TMP complexes and will help understand antibiotic transformations in wastewater treatment plants and aquatic environments.


Subject(s)
Sewage , Water Purification , Anti-Bacterial Agents , Biopolymers , Bioreactors , Carbon , Humic Substances/analysis , Nitrogen , Sewage/chemistry , Trimethoprim , Tryptophan , Wastewater/chemistry , Water , Water Purification/methods
19.
Chemosphere ; 308(Pt 3): 136597, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36167208

ABSTRACT

Microbial fuel cell-anaerobic digestion (MFC-AD) is a new sludge treatment technology with multi-path energy recovery. In this study, Fe0 and MnO2 with gradient concentration were added to investigate its effects on the sludge reduction, electrochemical performance, extracellular polymeric substances (EPS) of sludge, microbial community, electron distribution and energy flow of the MFC-AD system. Results showed that the highest sludge reduction 59% (49%), was obtained at 10 g/L Fe0 (5 g/L MnO2) adding and its total energy recovery efficiency increased by 100% (71%) compare to the control. Different Fe0 and MnO2 concentrations lead to different microbial mechanisms: at 10 g/L Fe0 or 5 g/L MnO2, it prefers to promote extracellular electrons transfer, favoring the Geobacter, Shewanella and Acinetobacter enrichment, while at 5 g/L Fe0 or 0.5 g/L MnO2 it plays a more important role in substrate metabolism of anaerobic digestion, with Clostridium, Roseomonas lacus, and Methylocystis enriched. Correspondingly, the electron quantity distribution from biomass to recovered energy ends (Current, CH4 and VFAs), was influenced by Fe0 and MnO2 concentration, indicating the controllability of the energy flow.


Subject(s)
Bioelectric Energy Sources , Anaerobiosis , Bioreactors , Manganese Compounds , Methane/metabolism , Oxides , Sewage/chemistry
20.
J Hazard Mater ; 438: 129556, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999746

ABSTRACT

Various pollutants commonly co-exist in the waste active sludge (WAS), but the interactive effects and mechanisms of co-occurrence pollutants on the WAS treatment remain unclear. This work mainly investigated the impacts of different surfactants (i.e., HTAB and SDBS) and CeO2 nanoparticles (NPs) co-occurrence on the WAS fermentation for short-chain fatty acids (SCFAs) production, and found that the CeO2 NPs coexisting with surfactants caused antagonistic effects on the SCFAs generation (10.7% and 33.9% inhibition by HTAB and SDBS, respectively). The surfactants and CeO2 NPs co-occurrence restrained the solubilization, hydrolysis, and acidification steps simultaneously. Moreover, the functional hydrolytic-acidogenic bacterial (e.g., Haliangium and Bacteroidetes sp.) and the microbial metabolic networks involved in extracellular hydrolysis (e.g., pepd and NEU1), substrate metabolism (e.g., ALDO and asdA), and fatty acid biosynthesis (e.g., aarC and pct) were all downregulated by 4.3-53.8% in the reactors with surfactants and CeO2 NPs co-occurrence. The presence of surfactants enhanced the dispersibility and stability of CeO2 NPs and the Ce dissolution (1.5-3.0 times higher). Also, surfactants contributed to the WAS disintegration, which could improve the interactive chances of microorganisms entrapped in WAS and CeO2 NPs by promoting the transportation channels, and therefore aggravated the toxicity towards anaerobic species.


Subject(s)
Environmental Pollutants , Nanoparticles , Fatty Acids, Volatile , Fermentation , Nanoparticles/toxicity , Sewage/chemistry , Surface-Active Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...